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The S matrix theory with use of the effective Hamiltonian is sketched and applied to
the description of the transmission through double quantum dots. The effective Hamil-
ton operator is non-hermitian, its eigenvalues are complex, the eigenfunctions are
bi-orthogonal. In this theory, singularities occur at points where two (or more) eigen-
values of the effective Hamiltonian coalesce. These points are physically meaningful:
they separate the scenario of avoided level crossings from that without any crossings
in the complex plane. They are branch points in the complex plane. Their geometrical
features are different from those of the diabolic points.
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1. INTRODUCTION

The advances in the nanotechnology make it possible to produce small quan-
tum dots and to use them for transport processes. In order to construct dots with
desired controllable effects, the theory has to meet the challenge to describe, in a
consistent manner, quantum systems that are coupled to an environment. The main
problem is caused by the different mathematical properties of the discrete states
of the system, on the one hand, and of the scattering states of the environment, on
the other hand.

During the last about fifty years several methods were developed in order
to obtain a solution of the problem. One of the most powerful methods is the
S matrix approach that allows to describe physical observables such as e.g. the
scattering cross section of nuclei, see e.g. Feshbach (1958, 1962). In the standard
approach, information on the resonance states is obtained from the poles of the S

matrix that provide the positions as well as the widths of the resonance states. This
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method gives reliable results when the resonances appear well isolated from one
another. When, however, the resonances start to overlap each other or (and) when
they lie in the neighborhood of decay thresholds, the standard method ceases to
be applicable. This drawback plays a role especially when the spectrum of the
system is determined by the propagation band of electrons as it is the case for the
transmission through quantum dots. In such a case, the widths of the resonance
states depend on energy in a natural manner, see e.g. Sadreev and Rotter (2003).
In order to construct quantum dots with special properties, more exact theoretical
methods must therefore be used that allow to take into account the influence of
neighboring resonance states and of decay thresholds onto each resonance state.

Based on the Feshbach projection operator technique (Feshbach, 1958, 1962),
it is possible today to use the S matrix formalism without continuing into the
complex plane (Okołowicz et al., 2003; Rotter, 1991). The spectroscopic properties
of the discrete states of the system as well as their coupling matrix elements to
the environment are contained in the effective Hamiltonian of the system. Its
eigenvalues and eigenfunctions are complex and energy dependent and contain
the influence of the neighborhood onto every resonance state. They provide the
positions and widths of the resonance states and ensure the unitarity of the S

matrix also in the overlapping regime and near to thresholds (Rotter, 2003). A
continuation of the energy into the complex plane is therefore not necessary, and
the poles of the S matrix need not to be considered.

Meanwhile, the effective Hamiltonian has been derived for different systems
such as nuclei (Okołowicz et al., 2003), atoms (Magunov et al., 1999, 2001, 2003a)
and quantum dots (Sadreev and Rotter, 2003; Rotter and Sadreev, 2004). The S

matrix has been calculated in all cases, and the influence of overlapping with
neighboring resonance states and of decay thresholds on observables has been
studied. For quantum dots, most interesting is the transmission. It may happen
that two (or more) eigenvalues of the effective Hamiltonian coalesce at a point in
the parameter space. These points are, generally, different from double poles of
the S matrix (Rotter and Sadreev, 2004).

Points with coalesced eigenvalues of a Hamilton operator are discussed in
the literature since more than forty years. Originally, the accidental coincidence of
two eigenvalues of a complex matrix is considered (Kato, 1966). At this point, the
Hilbert space is incomplete since the corresponding two eigenfunctions are not
independent from one another. These points are called therefore exceptional points.
Later, this concept is applied to non-hermitian matrices describing Gamow states
(Hernández et al., 2000, 2003; Moiseyev, 1998; Mondragon and Hernanández,
1993, 1996). In quantum systems embedded in a continuum of scattering states, the
points of coalesced eigenvalues of the non-hermitian effective Hamilton operator
are singular points (Okołowicz et al., 2003; Rotter, 2001; Rotter and Sadreev, 2004,
2005a). They influence the dynamics of the system in a broad neighborhood of the
singularity. They are branch points in the complex plane (BPCP) (Okołowicz et al.,
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2003; Rotter and Sadreev, 2005a). Here, the crossing scenario of the resonance
states changes from an avoided one to a crossing-free one. These singular points
are therefore of physical relevance.

The topological structure of a singular point is studied theoretically (Heiss
et al., 1998; Heiss, 1999, 2000; Keck et al., 2003; Rotter and Sadreev, 2005a)
and also experimentally by encircling it in a microwave cavity (Dembowski et al.,
2001, 2004). The singular point itself has a chiral structure (Dembowski et al.,
2003). The results for encircling a BPCP show a geometrical phase that differs from
the Berry phase. The well-known Berry phase (Berry, 1984; Berry and Wilkinson,
1984) appears by encircling a diabolic point (DP), i.e. the ‘crossing point’ of
two (discrete) eigenstates of a hermitian Hamilton operator. The existence of this
geometrical phase is proven in many experimental studies. We mention here only
the experiment performed in a microwave cavity (Lauber et al., 1994).

It is interesting to study the relation between the geometrical features of the
DPs and those of the BPCP in detail. We will do this in the following by using a
double quantum dot as an example. The advantage of using a double quantum dot
is that this system mimics, on the one hand, nuclear or atomic scattering and can
be controlled, on the other hand, by varying different parameters.

In Section 2, we sketch the formalism of the S matrix with use of the effective
Hamilton operator for the description of open quantum systems. We illustrate the
appearance of singular points by means of a two-by-two Hamiltonian matrix in
Section 3. In the following section, we give the effective Hamiltonian for a double
quantum dot and consider the transmission through this dot in Section 5. Also here
we focus onto the points of coalesced eigenvalues and their physical relevance. In
Section 6, the geometrical features of the singular points of the double quantum
dot are studied. They are compared with the geometrical features of DPs and with
experimental data. The results are summarized in the last section.

2. THE EFFECTIVE HAMILTONIAN OF AN OPEN QUANTUM SYSTEM

We use the Feshbach projection operator technique (Feshbach, 1958, 1962)
in order to solve the Schrödinger equation

(H full − E)�c
E = 0 (1)

in the whole function space (Rotter, 1991; Okołowicz et al., 2003). First, the
solutions in the function space of discrete states and those for the scattering states
have to be found separately,

(
HB −EB

k

)
�B

k = 0, (Hc−E) ξ
c(+)
E = 0. (2)
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Then, the projection operators are defined by

Q =
∑

k

|�B
k 〉〈�B

k |, P =
∑

c

∫ ε′
c

εc

dE |ξ c(+)
E 〉〈ξ c(+)

E | (3)

and the coupling matrix elements between the two subspaces are

γ 0
kc =

√
2π

〈
�B

k |HQP |ξ c(+)
E

〉
. (4)

Using these operators and the assumption that P + Q = 1, the full Hamiltonian
reads H full = HQQ + HQP + HPQ + HPP where HQQ ≡ QHQ and so on.
Rewriting Eq. (1), the solution of the Schrödinger equation reads

�c
E = ξ c

E +
∑

kj

(
�B

k + ωk

) 〈
�B

k

∣∣∣∣
1

E − Heff

∣∣∣∣�
B
j

〉 〈
�B

j |HQP |ξ c
E

〉
(5)

where

Heff = HQQ + HQP G
(+)
P HPQ (6)

is the effective Hamilton operator that appears in the Q subspace when the coupling
to the P subspace is taken into account. Further, ω(+)

k = G
(+)
P HPQ · �B

k and G
(+)
P =

P (E − HPP )−1P is the Green function in the P subspace. Diagonalizing Heff ,

Heff �̃k = zk �̃k, (7)

the solution in the whole function space reads (Okołowicz et al., 2003; Rotter,
1991)

�c
E = ξ c

E +
N∑

k=1

(
1 + G

(+)
P HPQ

)
�̃k · 〈�̃∗

k |HQP |ξ c
E〉

E − zk

. (8)

According to (8), the wave functions of the resonance states are

�̃k = (
1 + G

(+)
P HPQ

)
�̃k (9)

while their energies and widths follow from the solutions of the fixed-point
equations

Ek = Re (zk)|E=Ek
	k = 2 Im (zk)|E=Ek

. (10)

Using the Lippmann-Schwinger-like relation between the wave functions �̃k and
�̃k (Rotter, 1991), the coupling matrix elements between the resonance states and
the continuum of scattering wave functions are

γ̃kc =
√

2π
〈
�̃∗

k |HQP |ξ c
E

〉 =
√

2π
〈
�̃∗

k |HQP |χc
E

〉
(11)
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where the χc
E are solutions of the uncoupled channel equations (H (0)

c − E)χc
E = 0.

Using (11), the resonance part of the S matrix reads

S
(res)
cc′ = i

N∑

k=1

γ̃kc′ γ̃kc

E − zk

. (12)

Although (12) has the standard view, there are differences between (12)
and the standard expression. These differences are important in the regime of
overlapping resonances. In (12)

– the γ̃kc are calculated by means of the eigenfunctions of Heff ,
– the zk are the eigenvalues of Heff ,
– the γ̃kc and the zk depend on the energy E (and other parameters).

In the calculations with use of the effective Hamiltonian, the energy E of the inci-
dent particle is considered to be real, and the positions and widths of the resonance
states are determined by the complex eigenvalues zk of Heff . The poles of the S-
matrix are not considered. Furthermore, the S matrix is unitary at all energies also
in the regime of overlapping resonances (Rotter, 2003). We underline once more
that the part HQQ ≡ HB of the effective Hamilton operator Heff is diagonalized
so that the expression (6) is exact (and not the first part of a perturbation series).

The effective Hamilton operator Heff in the Q subspace is non-hermitian,
its eigenvalues zk and eigenfunctions �̃k are complex and energy dependent
(Okołowicz et al., 2003). The left and right eigenfunctions, �̃lt

k and �̃rt
k , are differ-

ent from one another, 〈�̃∗
k | Heff = 〈�̃∗

k | zk and Heff |�̃k〉 = zk |�̃k〉, and therefore
�̃rt

k ≡ �̃k ; �̃lt
k = �̃rt ∗

k ≡ �̃∗
k . The eigenfunctions of Heff can be orthonormalized

according to
〈
�̃lt

k |�̃rt
l

〉 ≡ (�̃k|�̃l) = 〈�̃∗
k |�̃l〉 = δkl . (13)

From these biorthogonality relations follows

Ak ≡ 〈�̃k|�̃k〉 ≥ 1 , B
l 	=k

k ≡ |〈�̃k|�̃l 	=k〉| ≥ 0. (14)

It may happen that |Ak| → ∞ and |Bl
k| → ∞, for more details see Okołowicz

et al. (2003). The properties of these singular points will be discussed in the
following.

Thus, an open quantum system is characterized by two Hamilton operators:
the hermitian Hamilton operator HB = H0 + V of the closed system, see (2), and
the non-hermitian Hamilton operator (6) of the system (Q subspace) when embed-
ded in the continuum of decay channels (P subspace). Two (or more) eigenvalues
of each Hamilton operator may accidentally coalesce. The corresponding points
in the real and complex plane, respectively, have special properties that are dif-
ferent from one another. When two (or more) of the complex eigenvalues of Heff

coalesce, Ak → ∞ and B
l 	=k

k → ∞.
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3. TWO-BY-TWO HAMILTONIAN MATRIX

Let us illustrate the crossing and avoided crossing scenario of discrete and
resonance states by using the two-by-two Hamiltonian matrix (Okołowicz et al.,
2003; Rotter, 2001)

H
(2)
eff =

(
ε1(a) 0

0 ε2(a)

)
−

(
0 w

w 0

)
. (15)

Here, the unperturbed energies of the two (resonance) states are denoted by εk =
ek − i

2γk, k = 1, 2. They are assumed to depend on the parameter a to be tuned
in such a manner that the two states may cross (ε1 = ε2) when w = 0. The two
states may interact via the non-diagonal matrix elements w. The eigenvalues of
(15) are

E± ≡ E± − i

2
	± = ε1 + ε2

2
± 1

2

√
F (a,w) (16)

where the difference between the two eigenvalues is determined by

F (a,w) = (ε1 − ε2)2 + 4 w2. (17)

For discrete states, ε1 − ε2 and w are real. Therefore, interacting discrete
states (w 	= 0) always avoid crossing. In such a case, F (a,w) > 0, and the levels
repel in energy.

The crossing scenario of resonance states is more interesting since both
ε1 − ε2 and w may be complex. For illustration let us consider the situation when
Im (F ) is small. When furthermore Im (w) is small, the two states are near to
one another (e1 ≈ e2) or (and) have comparable widths (γ1 ≈ γ2) in this case. The
corresponding crossing scenario follows directly from the eigenvalues of (15). The
energies and widths of the two resonance states are

Re (E±) ≡ E± = e1 + e2

2
± 1

2
Re

√
F (a,w) (18)

Im (E±) ≡ −	±
2

= −γ1 + γ2

4
± 1

2
Im

√
F (a,w). (19)

When F (a,w) > 0, level repulsion occurs. The two states avoid crossing in the
complex plane as well as in the projection onto the real axis. When however
F (a,w) < 0, width bifurcation occurs. In this case, the two states cross in the
projection onto the real (energy) axis. They do not cross in the complex plane due
to the different time scales related to them.

When F (a,w) = 0, the two states cross in the complex plane, i.e. their
energies and widths are equal to one another: E+ = E−. As has been shown in
many studies (Okołowicz et al., 2003), the coalescence of two (or more) complex
eigenvalues of the effective Hamiltonian causes a singularity, Ak → ∞, B

l 	=k

k →
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∞. This point is a BPCP that influences strongly the dynamics of open quantum
systems.

This example illustrates not only that level repulsion and bifurcation of the
widths follow directly from the equations for the eigenvalues of the Hamiltonian
(15), but also that resonance states of realistic systems may cross in the complex
plane. That means, while interacting discrete states always avoid crossing, inter-
acting resonance states may cross or avoid crossing. At the crossing points, the
crossing scenario changes. For a more detailed discussion see Okołowicz et al.
(2003); Rotter and Sadreev (2004, 2005a).

Additionally, we note that the eigenfunctions of HB = H0 + V may be rep-
resented by

ψB
k =

∑
akl ψ

B(0)
l (20)

where the ψ
B(0)
l are eigenfunctions of H0, the akl are real and

∑
l |akl|2 = 1. This

representation is not always well defined because some arbitrariness in defining
H0 and the corresponding basic set {ψB(0)

l } may appear.
The eigenfunctions of H

(2)
eff , however, can be represented in a natural man-

ner in relation to a well-defined set of basic wave functions. According to (6),
the system is embedded into the continuum. A natural basis is defined by the
eigenfunctions ψB

l of the Hamiltonian HB of the closed system,

H
(2)
eff = HB + VQP G

(+)
P VPQ =

(
e1(a) 0

0 e2(a)

)

−
(

i
2γ1(a) w

w i
2γ2(a)

)

. (21)

In this case, the representation is

ψ̃k =
∑

bkl ψB
l (22)

with complex bkl and
∑

l (bkl)2 = 1. It can be used, however, also the representa-
tion of the eigenfunctions of H

(2)
eff according to (15)

H
(2)
eff = H 0

eff + W =
(

e1(a) − i
2γ1(a) 0

0 e2(a) − i
2γ2(a)

)

−
(

0 w

w 0

)

(23)

where W describes the interaction of the resonance states via the continuum due
to their overlapping. In this case,

ψ̃k =
∑

b′
kl ψ̃0

l (24)

with complex b′
kl and

∑
l (b′

kl)
2 = 1. These two representations are completely

analogue to one another. Important is the normalization
∑

l (b′
kl)

2 = ∑
l (bkl)2 = 1

for resonance states in contrast to
∑

l |akl|2 = 1 for discrete states. It causes
|bkl| → ∞ (or |b′

kl| → ∞) at singular points (Okołowicz et al., 2003; Rotter,
2001; Rotter and Sadreev, 2005a).
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Fig. 1. Two single state quantum dots are connected to the wire w
with the coupling constants u and to the reservoirs (continuum of
scattering wave functions) with the coupling constants v.

4. REALISTIC EXAMPLE: DOUBLE QUANTUM DOT

We consider now a realistic example: a double quantum dot consisting of two
single dots that are connected by a wire of a certain length L, Fig. 1. For simplicity,
we assume here that the two single dots are identical and have each only one level
at ε1. The Hamiltonian of the closed double dot is (Rotter and Sadreev, 2005b)

HB =
⎛

⎝
ε1 u 0
u ε(L) u

0 u ε1

⎞

⎠ (25)

with the eigenvalues

EB
1,3 = ε1 + ε(L)

2
∓ η, EB

2 = ε1 (26)

and eigenfunctions

|1〉 = 1√
2η(η + �ε)

⎛

⎝
−u

η + �ε

−u

⎞

⎠ , |2〉 = 1√
2

⎛

⎝
1
0

−1

⎞

⎠ ,

|3〉 = 1√
2η(η − �ε)

⎛

⎝
u

η − �ε

u

⎞

⎠ . (27)

Here, ε(L) characterizes the energy of the wire and u stands for the coupling
between the single dots and the wire. Further,

�ε(L) = ε1 − ε(L)

2
, η2 = �ε2 + 2u2. (28)

When the double quantum dot is opened by attaching leads to it, the effective
Hamiltonian of the open system is (Rotter and Sadreev, 2004, 2005b)

Heff = HB +
∑

C=L,R

VBC

1

E+ − HC

VCB
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=

⎛

⎜⎜⎜
⎝

EB
1 − v2u2eik

η(η+�ε) 0 v2ueik√
2η

0 ε1 − v2eik 0

v2ueik√
2η

0 EB
3 − v2u2eik

η(η−�ε)

⎞

⎟⎟⎟
⎠

(29)

where L and R stand for the left and right lead, VBC and VCB for the coupling
between the double dot and the leads, and v characterizes this coupling strength.
The eigenvalues and eigenfunctions of Heff are

z2 = ε1 − v2eik,

z1,3 = ε1 + ε(L) − v2eik

2
∓

√(
v2eik

2
− �ε

)2

+ 2u2 (30)

and

|1) =
⎛

⎝
a

0
b

⎞

⎠ , |2) =
⎛

⎝
0
1
0

⎞

⎠ , |3) =
⎛

⎝
b

0
−a

⎞

⎠ . (31)

Here,

a = − f√
2ξ (ξ + ω)

, b =
√

ξ + ω

2ξ
(32)

and

f = v2ueik

√
2 η

, ω = −η + �εv2eik

2η
, ξ 2 = ω2 + f 2 . (33)

Let us now consider the points at which two (or three) eigenvalues of the
Hamiltonian coalesce. The points for the closed system (in the real plane) are
defined by

η2 = �ε2 + 2u2 = 0 (34)

according to (26), where EB
1 = EB

3 . At these points, the internal coupling u van-
ishes. Due to the condition u = 0, these points are not meaningful for realistic
systems. They are the DPs studied in many different systems.

Two eigenvalues of the effective Hamiltonian Heff coalesce in the complex
plane when

F ≡ ξ 2 = ω2 + f 2 = 0 (35)

according to Eq. (30). Here, the internal as well as the external coupling, u and
v, are different from zero. These points are meaningful therefore for realistic
systems. Everywhere, the wave functions are biorthogonal, (k|l) ≡ 〈k∗|l〉 = δk,l ,
and ψ̃k = ∑

bkl ψB
l without any restriction for the value of |bkl|, see (22) and
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Fig. 2. The evolution of the eigenvalues z1 (solid lines) and z3 (dashed lines) (a, b) and of the
components a = |a| eiα (dashed lines) and b = |b| eiβ (solid lines) of the eigenfunctions |1) and
|3) (c, d) of the effective Hamiltonian Heff as a function of v for E = Ec = √

2. Parameters: u =
uc = 1/4, L = Lc − 0.01, Lc = 1.4645, ε1 = 1, ε(L) = 2 − L/5. At the critical value of v, |a| �
1, |b| � 1 and the phases jump by −π/4. (Rotter and Sadreev, 2005a).

(24). At the points of coalescence, |bkl| → ∞ (Fig. 2). These points are BPCP
(Rotter and Sadreev, 2004, 2005a).

5. TRANSMISSION THROUGH DOUBLE QUANTUM DOTS

According to (12), the eigenvalues of the effective Hamilton operator Heff

determine the resonance structure of the cross section. The same holds for the
transmission through quantum dots which is given by (Sadreev and Rotter, 2003;
Rotter and Sadreev, 2004, 2005b)

t = −2πi
∑

k

〈L|V |k)(k|V |R〉
E − zk

. (36)

Here the matrix elements 〈L|V |k) and (k|V |R〉 describe the coupling of the states
k to the left (L) and right (R) lead, respectively.
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Numerical results obtained for the transmission through a double quantum
dot by varying different parameters (including the internal and external coupling
strengths u and v, respectively) can be found in Rotter and Sadreev (2004a, 2004b).
In these calculations, each single dot has only a small number of states while the
wire that connects the two single dots is characterized by the energy ε(L) where L

is the length of the wire. The numerical results show the following features (Rotter
and Sadreev, 2005a).

1. The avoided level crossing scenario appears when the ratio v/u is small.
Here the widths of the two resonance states are small and comparable
in value (or zero when the states are discrete). The energies show level
repulsion.

2. Singular points (BPCP) occur at a critical value of the ratio v/u. At
this value, the (complex) eigenvalues of (at least) two eigenstates of Heff

accidentally coalesce.
3. No crossing in the complex plane appears for a large ratio v/u. In this

case, the widths of the two states are different from one another due to the
bifurcation. The energies show level clustering.

4. The transmission is resonant for any ratio v/u between external and in-
ternal coupling strength.

These numerical results fit into the picture received for other open quantum
systems in the overlapping regime, e.g. for nuclei (Okołowicz et al., 2003), atoms
(Magunov et al., 1999, 2001, 2003a) and molecules (Peskin et al., 1994, 1997;
Rotter, 1997), see also Rotter (2004). While the Re (zk) have some relation to the
discrete eigenvalues Ek of the Hamiltonian HB , the Im (zk) express a new degree
of freedom of the open quantum system. They are, as a rule, strongly parameter
dependent. They may even vanish also when the decay is not forbidden by any
selection rule (Magunov et al., 1999, 2001; Rotter and Sadreev, 2004, 2005b).
Resonance states with vanishing width (‘ghost resonances’ (Ladron de Guevara
et al., 2003)) may cause, in a natural manner, zeros in the transmission through
double quantum dots (and double microwave billiards) when this is required by
the unitarity condition (Rotter and Sadreev, 2004, 2005b). Furthermore, the line
shape of resonances is strongly influenced by interferences between neighboring
resonances (Magunov et al., 2003b). It may be fitted even by a complex Fano
parameter as suggested by experimental results (Kobayashi et al., 2002).

A generic feature of open quantum systems in the overlapping regime is
the counterintuitive phenomenon of resonance trapping: with increasing coupling
strength between system and environment, some resonance states decouple from
the continuum of scattering wave functions while a few resonance states align with
the continuum channels (Rotter, 1991; Okołowicz et al., 2003). For an experimen-
tal proof see Persson et al. (2000); Stöckmann et al. (2002). This phenomenon
is caused by the BPCP where a bifurcation of the widths occurs. Only at small
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coupling strength between system and channels, the states remain almost un-
changed by the coupling to the channels. In this case the most important part of
Heff is the Hamilton operator HB whose rank is N (number of resonance states).
At large coupling strength between system and channels, however, the states are
strongly changed by the coupling to the channels: most important part of Heff is
the coupling matrix between system and channels whose rank is K (number of
decay channels). The transition between these two limiting cases takes place in a
comparably small parameter range in the neighborhood of the BPCP, see Rotter
and Sadreev (2004, 2005a) for double quantum dots as an example.

In any case, the effective Hamiltonian operator Heff of an open quantum
system reflects the spectral properties of the closed system as well as the coupling
to the environment. In the overlapping regime, non-diagonal matrix elements of
Heff arise from the interaction of the different resonance states via the continuum,
see the representation (23) of the effective Hamiltonian H

(2)
eff . In an open quantum

system different time scales exist in parallel.

6. GEOMETRICAL FEATURES OF THE SINGULAR POINTS OF THE
DOUBLE QUANTUM DOT

The geometrical features of singular points can be studied best by encircling
them. Let us first encircle the BPCP where two (or more) eigenvalues of Heff

coalesce. Here F = ( v2eik

2 − �ε)2 + 2u2 = 0 according to (35). The encircling
can be performed according to X = |F | cos φ, Y = |F | sin φ. As a result, the
difference z1 − z3 of the eigenvalues varies as exp (iφ/2) and the components
a, b of the eigenvectors vary as exp (−iφ/4), for details see Rotter and Sadreev,
2005. This means that the eigenvalues are restored after two loops while the
eigenvectors are restored after four loops. The same result is obtained when the
singular points are encircled by varying physical parameters (that are independent
from one another) such as L = Lc + r cos θ together with E = Ec + r sin θ or
v = vc + r sin θ (Rotter and Sadreev, 2005a).

These theoretical results obtained for the singular points of a double quantum
dot are in agreement with experimental data that are received by encircling a
singular point in a microwave cavity (Dembowski et al., 2001).

The geometrical properties of the DPs, where η2 = �ε2 + 2u2 = 0 accord-
ing to (34), are different from those of the BPCP. The encircling can be performed
according to �ε = η cos θ,

√
2u = η sin θ . The result is the following: the eigen-

values EB
1 and EB

3 vary as cos θ and the components of the eigenvectors contain
sin θ/2 or cos θ/2. That means, the eigenvalues are restored after each loop while
the eigenvectors are restored only after two loops. Encircling in the space of phys-
ical parameters such as L and u gives the same result. The phase appearing after
one loop is the well-known Berry phase that is obtained by encircling a DP. Among
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many other experimental proofs, the Berry phase is found also in a microwave
cavity when a DP is encircled (Lauber et al., 1994).

Additionally it has been shown (Rotter and Sadreev, 2005a) that the geomet-
rical features of the DPs in the real plane and those of the BPCP are completely
different from one another:

• encircling a DP in the real plane causes a geometric phase in the closed
system but no phase in the open system

• encircling a BPCP causes a geometric phase in the open system but has no
effect in the closed system.

The DP in the real plane (v = 0) is understood to unfold into two BPCP
with different chirality each, when v becomes different from zero (Keck et al.,
2003). It is interesting therefore to compare the encircling of a DP in the real plane
(v = 0) with that of the two corresponding BPCP (v 	= 0). In the first case, the
Berry phase is obtained while there is no phase at all in the second case (Rotter
and Sadreev, 2005a). The reason is that two BPCP with different chirality are
encircled in the second case so that the phases compensate each other. There is,
however, a strong angle dependence of the widths of the states in this latter case:
the difference between the widths of the two states varies twice in each loop
from 0 to its maximal value (Rotter and Sadreev, 2005a). A width bifurcation
appears every time when u = 0 is passed. Thus, the encircling of the two BPCP
with different chirality differs from the encircling of the DP into which both
BPCP coalesce when v → 0. The difference exists already at infinitesimal small
values of v. The reason for this behavior is the new freedom degree of every state
when it is embedded into the continuum, i.e. its decay width. By means of the
parameter dependence of the widths, the system is able to fulfill constraints of
different type onto the system. This holds also for the unitarity of the S matrix
(Rotter, 2003).

The different topological structure of the DPs and of the BPCP corresponds
to their different physical meaning. At the DPs, the interaction between the levels
is vanishing (u = 0). These points are therefore not met in realistic systems where
u 	= 0. Instead, the discrete states of realistic systems avoid crossing. The Berry
phase is a signature of the DP.

At BPCP, however, the interaction between the levels is nonvanishing
(v 	= 0, u 	= 0). These points can therefore be met in realistic systems by control-
ling certain parameters (Rotter and Sadreev, 2005a). When the ratio v/u between
external and internal coupling strength is small, the resonance states avoid cross-
ing. When it is large, the resonance states exist at different times and they do not
cross at all. Thus, the BPCP are physically meaningful: they separate the avoided
level crossing scenario from that without any crossings (Rotter and Sadreev,
2005a).
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7. SUMMARY

The S matrix formalism with the effective Hamilton operator is a powerful
method for the study of open quantum systems. It gives reliable results also in
the neighborhood of decay thresholds and in the overlapping regime. While the
parameter dependence of the energies of the resonance states is comparably small,
that of the widths may be very large. The widths, having no counterpart in the
corresponding closed system, play an important role in order to fulfill constraints
of different type onto the system. The widths of resonance states may even vanish
also when the decay is not forbidden by any selection rule.

In the S matrix formalism with effective Hamilton operator (6), a new type of
singular points appears. These points are BPCP. They are physically meaningful
and influence the properties of an open quantum system in a large neighborhood.
They separate the scenario with avoided level crossing from that without any
crossing. The scenario with level repulsion is realized for discrete states as well as
for long-lived resonance states the widths of which differ from one another only
slightly. At the BPCP, the widths of the resonance states bifurcate and the resonance
states do no longer cross or avoid crossing in the complex plane. They cross in the
projection onto the real energy axis corresponding to a certain level clustering.

The geometrical features of the BPCP differ from those of the DPs. While
the well-known Berry phase appears by encircling the DPs, the phase obtained by
encircling the BPCP is another one. It reflects the change of the crossing scenario
at these points: the eigenvalues are restored only after two full loops and the eigen-
functions are restored after four full loops. The DPs, however, lie within the avoided
level crossing scenario: the eigenvalues are restored after each full loop and the
eigenfunctions after two full loops. The different geometrical features of the BPCP
and of the DPs in the real plane correspond to their different physical meaning.
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Dembowski, C., Dietz, B., Gräf, H. D., Harney, H. L., Heine, A., Heiss, W. D., and Richter, A. (2004).

Physical Review E 69, 056216.



1928 Rotter and Sadreev
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